Bibliography#
- AAA+23
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, and others. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- ADB+23
Andrea Agostinelli, Timo I Denk, Zalán Borsos, Jesse Engel, Mauro Verzetti, Antoine Caillon, Qingqing Huang, Aren Jansen, Adam Roberts, Marco Tagliasacchi, and others. Musiclm: generating music from text. arXiv preprint arXiv:2301.11325, 2023.
- CLZ+23
Arun Tejasvi Chaganty, Megan Leszczynski, Shu Zhang, Ravi Ganti, Krisztian Balog, and Filip Radlinski. Beyond single items: exploring user preferences in item sets with the conversational playlist curation dataset. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2754–2764. 2023.
- CN24
Ke Chen and Zachary Novack. Music generation reference template. UCSD, 2024.
- CWL+23
Ke Chen, Yusong Wu, Haohe Liu, Marianna Nezhurina, Taylor Berg-Kirkpatrick, and Shlomo Dubnov. Musicldm: enhancing novelty in text-to-music generation using beat-synchronous mixup strategies. arXiv preprint arXiv:2308.01546, 2023.
- CLPN19
Jeong Choi, Jongpil Lee, Jiyoung Park, and Juhan Nam. Zero-shot learning for audio-based music classification and tagging. In ISMIR. 2019.
- CHL+24
Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, and others. Scaling instruction-finetuned language models. Journal of Machine Learning Research, 25(70):1–53, 2024.
- CKG+24
Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, and Alexandre Défossez. Simple and controllable music generation. Advances in Neural Information Processing Systems, 2024.
- DCLT18
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
- DJP+20
Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya Sutskever. Jukebox: a generative model for music. arXiv preprint arXiv:2005.00341, 2020.
- DCLN23
SeungHeon Doh, Keunwoo Choi, Jongpil Lee, and Juhan Nam. Lp-musiccaps: llm-based pseudo music captioning. arXiv preprint arXiv:2307.16372, 2023.
- DWCN23
SeungHeon Doh, Minz Won, Keunwoo Choi, and Juhan Nam. Toward universal text-to-music retrieval. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1–5. IEEE, 2023.
- DMP18
Chris Donahue, Julian McAuley, and Miller Puckette. Adversarial audio synthesis. arXiv preprint arXiv:1802.04208, 2018.
- ELBMG07
Douglas Eck, Paul Lamere, Thierry Bertin-Mahieux, and Stephen Green. Automatic generation of social tags for music recommendation. Advances in neural information processing systems, 2007.
- ERR+17
Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Mohammad Norouzi, Douglas Eck, and Karen Simonyan. Neural audio synthesis of musical notes with wavenet autoencoders. In International Conference on Machine Learning. PMLR, 2017.
- FLTZ10
Zhouyu Fu, Guojun Lu, Kai Ming Ting, and Dengsheng Zhang. A survey of audio-based music classification and annotation. IEEE transactions on multimedia, 2010.
- GDSB23
Josh Gardner, Simon Durand, Daniel Stoller, and Rachel M Bittner. Llark: a multimodal foundation model for music. arXiv preprint arXiv:2310.07160, 2023.
- HJL+22
Qingqing Huang, Aren Jansen, Joonseok Lee, Ravi Ganti, Judith Yue Li, and Daniel PW Ellis. Mulan: a joint embedding of music audio and natural language. arXiv preprint arXiv:2208.12415, 2022.
- Lam08
Paul Lamere. Social tagging and music information retrieval. Journal of new music research, 2008.
- MBQF21
Ilaria Manco, Emmanouil Benetos, Elio Quinton, and György Fazekas. Muscaps: generating captions for music audio. In 2021 International Joint Conference on Neural Networks (IJCNN), 1–8. IEEE, 2021.
- MBQF22a
Ilaria Manco, Emmanouil Benetos, Elio Quinton, and György Fazekas. Contrastive audio-language learning for music. arXiv preprint arXiv:2208.12208, 2022.
- MBQF22b
Ilaria Manco, Emmanouil Benetos, Elio Quinton, and György Fazekas. Learning music audio representations via weak language supervision. In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 456–460. IEEE, 2022.
- MKG+16
Soroush Mehri, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar, Shubham Jain, Jose Sotelo, Aaron Courville, and Yoshua Bengio. Samplernn: an unconditional end-to-end neural audio generation model. arXiv preprint arXiv:1612.07837, 2016.
- MWPT18
Noam Mor, Lior Wolf, Adam Polyak, and Yaniv Taigman. A universal music translation network. arXiv preprint arXiv:1805.07848, 2018.
- NCL+18
Juhan Nam, Keunwoo Choi, Jongpil Lee, Szu-Yu Chou, and Yi-Hsuan Yang. Deep learning for audio-based music classification and tagging: teaching computers to distinguish rock from bach. IEEE signal processing magazine, 2018.
- NMBKB24
Zachary Novack, Julian McAuley, Taylor Berg-Kirkpatrick, and Nicholas J Bryan. Ditto: diffusion inference-time t-optimization for music generation. arXiv preprint arXiv:2401.12179, 2024.
- OWJ+22
Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, and others. Training language models to follow instructions with human feedback. Advances in neural information processing systems, 2022.
- RKH+21
Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, and others. Learning transferable visual models from natural language supervision. In International conference on machine learning, 8748–8763. PMLR, 2021.
- RKX+23
Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever. Robust speech recognition via large-scale weak supervision. In International Conference on Machine Learning, 28492–28518. PMLR, 2023.
- RWC+19
Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, and others. Language models are unsupervised multitask learners. OpenAI blog, 2019.
- RSR+20
Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of machine learning research, 21(140):1–67, 2020.
- RPG+21
Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine learning, 8821–8831. Pmlr, 2021.
- SLC07
Mohamed Sordo, Cyril Laurier, and Oscar Celma. Annotating music collections: how content-based similarity helps to propagate labels. In ISMIR, 531–534. 2007.
- TBTL08
Douglas Turnbull, Luke Barrington, David Torres, and Gert Lanckriet. Semantic annotation and retrieval of music and sound effects. IEEE Transactions on Audio, Speech, and Language Processing, 16(2):467–476, 2008.
- VDODZ+16
Aaron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, Koray Kavukcuoglu, and others. Wavenet: a generative model for raw audio. arXiv preprint arXiv:1609.03499, 2016.
- WBZ+21
Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint arXiv:2109.01652, 2021.
- WDWB23
Shih-Lun Wu, Chris Donahue, Shinji Watanabe, and Nicholas J Bryan. Music controlnet: multiple time-varying controls for music generation. arXiv preprint arXiv:2311.07069, 2023.
- YWV+22
Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu. Coca: contrastive captioners are image-text foundation models. arXiv preprint arXiv:2205.01917, 2022.